
IEEE TRANSACTIONS ON BROADCASTING, VOL. 60, NO. 3, SEPTEMBER 2014 555

Hybrid No-Reference Quality Metric for Singly and
Multiply Distorted Images

Ke Gu, Guangtao Zhai, Xiaokang Yang, Senior Member, IEEE, and Wenjun Zhang, Fellow, IEEE

Abstract—In a typical image communication system, the visual
signal presented to the end users may undergo the steps of acqui-
sition, compression and transmission which cause the artifacts
of blurring, quantization and noise. However, the researches of
image quality assessment (IQA) with multiple distortion types
are very limited. In this paper, we first introduce a new multi-
ply distorted image database (MDID2013), which is composed of
324 images that are simultaneously corrupted by blurring, JPEG
compression and noise injection. We then propose a new six-step
blind metric (SISBLIM) for quality assessment of both singly
and multiply distorted images. Inspired by the early human visual
model and recently revealed free energy based brain theory, our
method works to systematically combine the single quality predic-
tion of each emerging distortion type and joint effects of different
distortion sources. Comparative studies of the proposed SISBLIM
with popular full-reference IQA approaches and start-of-the-art
no-reference IQA metrics are conducted on five singly distorted
image databases (LIVE, TID2008, CSIQ, IVC, Toyama) and two
newly released multiply distorted image databases (LIVEMD,
MDID2013). Experimental results confirm the effectiveness of
our blind technique. MATLAB codes of the proposed SISBLIM
algorithm and MDID2013 database will be available online at
http://gvsp.sjtu.edu.cn/.

Index Terms—Image quality assessment (IQA), blind/no-
reference (NR), multiply distortion types, human visual system
(HVS), joint effects, free energy.

I. INTRODUCTION

IMAGE quality assessment (IQA) is an important topic for
both the scientific research and applicational development

of digital image processing systems. IQA can serve as a perfor-
mance measure as well as an optimization criterion for various
approaches in computer vision and image processing, such
as image/video compression [1]-[4], restoration [27], denois-
ing [32] and enhancement [5]. The peak signal-to-noise ratio
(PSNR) has prevailed for decades as the most popular IQA
algorithm before gradually giving way to the structural simi-
larity index (SSIM) [6] emerged a decade ago. Based on the
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Fig. 1. Illustration of three steps (acquisition, compression, and transmission)
which images usually undergo before the final display in front of consumers.

hypothesis that the perception of the human visual system
(HVS) is highly capable of extracting structural information
from an image, SSIM obtains better performance than PSNR
on the LIVE database [7].

IQA approaches are typically divided into two categories,
subjective assessment and objective assessment. According to
a series of recommendations given by VQEG and ITU (e.g., the
ITU-R BT.500 [8]), quite a few image quality databases with
subjective ratings have been released during the past decade,
and this largely promoted the research of IQA. Hundreds of
IQA methods using a variety of perceptual/statistical models
were developed [9]–[24]. For the scenario of full-reference (FR)
IQA, very high performance in terms of the correlation
between subjective scores and objective quality predictions
have been achieved by those improved SSIM-type of methods,
e.g., the multi-scale SSIM (MS-SSIM) [9], the natural scene
statistics (NSS) inspired information content weighted SSIM
(IW-SSIM) [14], and the newly proposed structural similarity
weighted SSIM (SW-SSIM) [23].

Besides FR IQA algorithms, last several years have seen a
surge of reduced-reference (RR) IQA metrics [25]–[29] and
no-reference (NR) IQA metrics [30]–[34]. Those RR and NR
IQA methods can be roughly divided into two types. The
first is motivated by the recent findings in brain science,
such as RR free energy based distortion metric (FEDM)
and NR free energy based quality metric (NFEQM) [26].
These approaches were designed to model the internal gen-
erative mechanism of human brain. We lately proposed NR
Free energy and Structural degradation model based Distortion
Metric (NFSDM) [33] by integrating a pair of RR IQA algo-
rithms (FEDM and structural degradation model (SDM) [28]).

The second type of IQA metrics targets to predict the
image quality through characterizing the NSS regularity.
Distortion Identification-based Image Verity and INtegrity
Evaluation (DIIVINE) [30] of 88 features works in the DWT
domain by distortion identification before distortion-specific
quality assessment. BLind Image Integrity Notator using DCT
Statistics (BLIINDS-II) [31] and Blind/Referenceless Image
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Spatial Quality Evaluator (BRISQUE) [32] were respectively
designed in DCT and spatial domains with less features.
Instead of evaluating the image quality by the regression mod-
ule from subjective scores of the training samples, natural
image quality evaluator (NIQE) [34] was recently developed
without using human scored images.

Additionally, there exists another class of blind met-
rics devoted to specific distortion types [35]–[43]. In early
attempts, Marziliano et al. developed a Blind Blur Metric
(MBBM) [35] via vertical and horizontal edge detectors.
Wang et al. proposed a No-reference JPEG-quality Evaluator
(WNJE) [36] to measure blocking effects and relative blur.
The fast image sharpness (FISH and FISHbb) method [37]
was recently designed for blurriness estimation based on the
log-energy in high frequency DWT subbands. Except blind
measures for blur and JPEG compression, noise estimation of
important application in denoising has nowadays been widely
researched and has aroused several valid approaches, such as
scale invariant based noise estimator (SINE) [38] and weak
textured patches based noise evaluator (WTPNE) [39].

Despite the prosperity and successfulness of IQA studies, most
image quality metrics can only deal efficiently with images
of single distortion type. But the outputs of practical image
processing/communication systems are usually contaminated
by more than one distortion source, and to facilitate the IQA
research alone this line, Jayaraman et al. recently released a
new LIVE multiply distorted image database (LIVEMD) [44]
that includes two groups of doubly distorted images for two
scenarios: 1) image storage, where images are first blurred
and then compressed by a JPEG encoder; 2) camera image
acquisition, where images are first blurred due to defocusing
and then corrupted by white noise to simulate sensor noise. It
is easy to imagine that multiple distortions cause bigger trouble
for the HVS to interpret the useful image content.

In real image communication systems, images usually
undergo three steps - acquisition, compression and transmis-
sion - before finally reaching to end consumers, as illustrated
in Fig. 1. This makes images very likely to be contami-
nated together with artifacts of JPEG compression, blurring
and noise injection. To faithfully model this real-world mixed
artifacts, we in this paper introduce a new multiply distorted
image database (MDID2013), which consists of 324 test-
ing images simultaneously corrupted by three distortion types
mentioned above and associated subjective human ratings
obtained from twenty-five inexperienced observers.

In [45], an early model utilizes the low-pass and high-
pass filters as well as non-linear transfer functions to simulate
the HVS. This implies that human beings can separately
perceive the degree of each type of distortion from mixed arti-
facts. In addition, Chandler reviewed some experiments and
pointed out a few possible joint effects of various distortion
types [46]. To comprehensively take into account aforemen-
tioned factors, we in this paper propose a new SIx-Step
BLInd Metric (SISBLIM)1 for quality assessment of multiply

1A preliminary version of the proposed algorithm has been introduced in a
conference paper [47]. The SISBLIM presented in this paper is an improved
version of the FISBLIM in [47].

distorted images by combining the single quality prediction
of each emerging distortion type and joint effects of different
distortion sources. The proposed blind IQA metric is consisted
by six parts, noise estimation, image denoising, blur measure,
JPEG-quality evaluator, joint effects’ prediction, and HVS
based fusion. Specifically, the noise level of an input image
is measured first, followed by a possible denoising operation
depending on the existence of additive noise. The noiseless
or denoised image is then independently assessed with blur
and JPEG methods. The joint effect is evaluated based on
the free energy principle [26]. Finally the quality score pre-
dicted by SIBLISM is computed as a systematic integration
of sub-scores for the artifacts of additive noise, blurring,
JPEG compression and the joint effect. It will be shown
that our blind metric is extremely effective against many
mainstream FR IQA approaches and state-of-the-art NR IQA
metrics on both singly and multiply distorted image quality
databases.

The remainder of this paper is organized as follows.
Section II first introduces the new MDID2013 database
for IQA of multiple distortions. In Section III, we ana-
lyze some possible working mechanisms of the HVS when
performing IQA before presenting SISBLIM in detail. In
Section IV, experimental results and comparative studies using
seven image databases (LIVE [7], TID2008 [48], CSIQ [49],
IVC [50], Toyama [51], LIVEMD [44], and MDID2013) are
reported and discussed. Finally, Section V concludes this
paper.

II. MDID2013 DATABASE

As argued in a practical image communication system such
as outlined in Fig. 1, images usually undergo the stages of
acquisition, compression and transmission, are presumably

(a)

(b)

Fig. 2. Twelve lossless natural color images. (a) Six standard definition
images of size 768 × 512 from Kodak database [52]. (b) Six high definition
images of size 1280 × 720 from LIVEMD [44].
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distorted with the artifacts of Gaussian blurring, JPEG com-
pression and white noise injection in order. The MDID2013
database is introduced to simulate this process. Images in
MDID2013 come from 12 pristine images. Fig. 2 shows the
elaborately selected image sources: one half of images of
size 768 × 512 from Kodak database [52], and the other half
images of size 1280×720 from LIVEMD database [44]. They
span a wide range of scenes, colors, illumination levels and
foreground/background configurations. The overall 324 testing
images are generated by successively corrupting each original
image with blur, JPEG compression and noise. Details of the
artifacts are given below:

• Gaussian blur: We employ Gaussian kernels of standard
deviation σG with a window of size lG × lG based on the
Matlab fspecial and imfilter commands. Each of the R, G
and B planes was blurred using the same kernel.
• JPEG: We use the Matlab imwrite command to create
JPEG compressed images depending on Q parameters.
• White noise: We add a standard normal pdf of variance
σ 2

N to each of the three planes R, G and B using the Matlab
imnoise function.

The parameters stated above are the same with those used
in [44], in order to make MDID2013 and LIVEMD databases
complementary, since the LIVEMD includes one/double-fold
artifacts whereas our MDID2013 only has three-fold distorted
images. Furthermore, the utility of the same parameters is
also to keep the distorted images perceptually separable from
each other and from the references, and to keep the distortions
within a realistic range.

We conducted the subjective viewing test with a
single-stimulus (SS) method in accordance with ITU-R
BT.500-12 [8]. Twenty-five inexperienced subjects participated
in this test. Most of these observers were college students
with different majors. To automatically display the testing
images and collect the raw subjective ratings, we designed
and used an interactive system similar to that in [29]. The
viewing distance is fixed at four times of the image height
to match the conditions in LIVEMD [44]. Note that the test-
ing images have two kinds of image sizes, meaning that those
observers have to score them at two viewing distances. To
avoid frequently adjusting the distances, we divide the overall
test into two consecutive parts. The first part proceeds with all
the testing images of size 768 × 512, while the second part
includes images of size 1280 × 720. We randomized the pre-
sentation order in each section to eliminate memory effects on
the mean scores as much as possible. During the view session,

TABLE I
SUBJECTIVE TEST CONDITIONS AND PARAMETERS

Fig. 3. Histogram of DMOS in each part and the overall database.

the subjects were asked to provide their overall perception of
quality on a continuous quality scale from 0 to 1 with the
precision up to 0.01%. Table I summarizes the subjective test
conditions with some key parameters.

After the viewing test, we calculate the DMOS values for all
the testing images. Here, we denote sab as the score provided
by subject a to the testing image Ib, where a = {1, . . . , 20}
and b = {1, . . . , 324}, and denote s′

ab as the rating of each
original image. The following steps are used then:

• Outliers screening, to improve fidelity of the data.
• Differential scores computing, to acquire the difference
between the pair of scores dab = sab-s′

ab.
• Averaging, to calculate the DMOS value for the image Ib

as 1
NA

∑
x dab, where NA is the number of subjects.

Distributions of DMOS scores for the two individual parts
and the whole data are exhibited in Fig. 3. Notice that the
shapes of distributions for two parts in Fig. 3 are quite similar.
This demonstrates the visual quality of multiple distortions is
almost immune to the change of image sizes.

III. SISBLIM ALGORITHM

An early human vision model is constructed by three parts,
low-pass filter, logarithmic brightness mapping, and high-pass
filter [45]. Inspired by this model, we hypothesize that human
beings can immediately perceive the noise level and denoise
the image using the low-pass filter when watching a multiply
distorted image. Thereafter, human beings can easily esti-
mate the degree of blur and JPEG compression based on the
high-pass filter. In other words, the image degradation caused
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by each distortion source can be separately perceived. It is
obvious that there also exist joint effects of mixed artifacts.
In [46], Chandler reviewed some experiments and provided a
few possible joint effects. These effects usually further lower
the image quality, rendering a smaller score than the direct
combination of each single quality score. In practice, the joint
effect, because of masking effects, is strongly affected by the
image content. Following the method in [53], ‘free energy’ is
adopted to measure the descriptive complexity of the distorted
image, thereby to approximate the joint effect.

Accordingly, the proposed training-free SISBLIM works to
combine the single quality score of each emerging distortion
type and the joint effect of mixed artifacts. Fig. 4 shows major
steps of SISBLIM, which consists of noise estimation, image
denoising, blur measure, JPEG-quality evaluator, joint effect’s
prediction, and HVS based fusion model. The building blocks
in SISBLIM are used to simulate the above-mentioned percep-
tual process of the HVS for multiply distorted images. For an
input image signal, we first predict the noise variance. Based
on this estimated noise level, we apply BM3D [54] to image
denoising. Blur and JPEG artifacts are then separately assessed
for the noiseless or denoised image, and the joint effect is mea-
sured by ‘free energy’. Finally, the image quality is derived
by an appropriate integration of estimates of noise, blur, JPEG
compression artifacts and the joint effect.

A. Noise Estimation

It has been found in [38] that the kurtosis values tend to
be invariant across scales for a natural image, and this scale
invariance will be deteriorated by the added noise. For an
input image signal x, the kurtosis of its noisy version y can
be expressed as a function of kurtosis and variance of x and
the variance of noise:

ky = kx(α) − 3

(1 + σ 2
n

σ 2
x
)2

+ 3 (1)

where kx and ky are the kurtosis values of x and y, and σx and
σn are the variance values of x and the added noise n. So the
noise level σ̂ 2

n of y can be estimated by minimizing:

σ̂ 2
n = arg min

kx,σ 2
n

N2
∑

i=2

∣
∣
∣
∣

kx − 3

(1 + σ 2
n

σ 2
yi

−σ 2
n
)2

+ 3 − kyi

∣
∣
∣
∣. (2)

where σ 2
yi

and kyi are computed from the filter responses of y
with each of N × N DCT basis.

B. Image Denoising

If the multiply distorted image is noisy, human brains
tend to denoise it at once. With the estimated noise level
in Section III-A, we choose the high-performance BM3D
method [54] for image denoising. The main steps are outlined
as follows.

1) Obtain the basic estimation.
• Block-wise estimations. For each block in the noisy
image, use block-matching to find the locations of the
blocks, which are similar to the currently processed one.

Fig. 4. Major steps of the proposed SISBLIM algorithm.

Then, use 3D transform to attenuate the noise by hard-
thresholding its transform spectrum. Finally, invert 3D
transform to produce estimations of all grouped blocks.
• Aggregation. Compute the basic estimation by a weighted
average of obtained block-wise estimations.
2) Obtain the final estimation by using the basic estimation
to further improve the grouping and to preform collaborative
Wiener filtering.
• Block-wise estimations. For each block in the basic esti-
mation, use block-matching to search for the locations of
the blocks, which are similar to the currently processed one,
thereby to form a pair of 3D arrays (groups). One is from
the noisy image, and the other is from the basic estimation.
Next, apply 3D transform on this couple of 3D arrays and
perform 3D Wiener filtering using the energy spectra of the
basic estimation. Eventually, invert 3D transform to produce
estimations of all grouped blocks.
• Aggregation. Compute the final estimation by a weighted
average of obtained block-wise estimations.

C. Blur Measure

The blurriness of noiseless/denoised image is measured by
MBBM. Edge detection is first used to find vertical/horizontal
edges in the input visual signal. Next, each row/column of
the image is scanned. For pixels belonging to an edge loca-
tion, the start and end positions of the edge are defined as the
local extrema locations closest to the edge. The edge width is
defined as the difference between the end and start positions,
and is identified as the local blur measure for this edge loca-
tion. At last, the global blur measure for the whole image is
obtained by computing the mean value of the local blur values
over all the edge locations.

D. JPEG-Quality Evaluator

For JPEG compression, blurring and blockiness occur
together because of the coarse quantization and the indepen-
dent processing of image blocks. The blurring effect is mainly
introduced from the deletion of high frequency DCT coeffi-
cients while the blockiness occurs due to the discontinuity at
block boundaries. On this base, WNJE performs in four steps:
First, blockiness is estimated as the average differences across
block boundaries:

Bh = 1

H(�W/8� − 1)

H∑

i=1

�W/8�−1∑

j=1

|Dh(i, 8j)|; (3)
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where Dh(m, n) = x(m, n+1)−x(m, n), n ∈ [1, W −1] and H
and W independently indicate the image height and width.
Second, the average absolute difference between in-block
image samples is calculated as follows:

Ah = 1

7

[
1

H(W − 1)

H∑

i=1

W−1∑

j=1

|Dh(i, j)| − Bh

]

; (4)

Third, the horizontal zero crossing rate is computed by

Zh = 1

H(W − 2)

H∑

i=1

W−2∑

j=1

Dh(i, j); (5)

Finally, the image quality prediction can be given by

QJ = φ1 + φ2(BJ)
θ1(AJ)

θ2(ZJ)
θ3 (6)

where

BJ = Bh + Bv

2
, AJ = Ah + Av

2
, ZJ = Zh + Zv

2
, (7)

and Bv, Av and Zv are vertical features using similar methods
as Bh, Ah and Zh. {φ1, φ2, θ1, θ2, θ3} are model parameters
to be determined later.

E. Joint Effect’s Prediction

The joint effect of mixed artifacts has an important influ-
ence on the human visual perception to the quality of the
multiply distorted image. This joint effect is clearly affected
by the interaction of different distortion types. Due to the exis-
tence of masking effects, this effect also substantially depends
on the image content. Therefore, the two aforementioned fac-
tors should be considered to estimate the joint effect. Notice
that images of more masks are usually difficult to describe
on the one hand. On the other hand, we note that the per-
ceived strength of the noise will increase when it is added to
a more blurry image [46]. This phenomenon can be explained
by the fact that the increasing amount of blur reduces the noise
masking in the input image, thereby rendering the noise more
pronounced and the image harder to characterize. Inspired by
these accounts, we in this part resort to the image descriptive
complexity to measure the joint effect.

The image descriptive complexity, however, is an abstract
concept. To address this problem, we question into the neu-
rological and psychophysical mechanism of human vision.
Particularly, free energy is used here since it can well approx-
imate the process of the HVS. The free energy theory was
recently revealed to explain and unify brain theories in bio-
logical and physical sciences about human action, perception
and learning [55]–[56]. This principle suggests that the brain
always seeks the most ‘logical’ explanation of each given
scene by tuning its internal generative model. The gap between
the external input and its generative-model-explainable part
should be related to the complexity of the given image.

Specifically, we assume for operational amenability that the
internal generative model g for visual perception is parametric,
which adjusts the vector θ of parameters to explain perceived
scenes. Given an image x, its ‘surprise’ can be measured by

Fig. 5. Scatter plots of DMOS verus SINE [38] on LIVEMD. Red,
green, blue, and black plots represent four various levels of noise.

Fig. 6. Scatter plots of BJ versus AJ on LIVEMD. Red, green,
blue, and black plots correspond to four different degrees of JPEG
compression.

integrating the joint distribution p(x, θ |g) over the space of
model parameters θ :

− log p(x|g) = − log
∫

p(x, θ |g)dθ. (8)

We introduce an auxiliary term q(θ |x) into both the denomi-
nator and numerator in Eq. (8) and rewrite it as

− log p(x|g) = − log
∫

q(θ |x)
p(x, θ |g)

q(θ |x)
dθ. (9)

Using Jensen’s inequality, we can further get

− log p(x) ≤ −
∫

q(θ |x) log
p(x, θ)

q(θ |x)
dθ (10)

where the right hand side is the free energy:

F(θ) = −
∫

q(θ |x) log
p(x, θ)

q(θ |x)
dθ. (11)

More details of free energy can be found in [26], [55]–[56]. In
this work, we define the joint effect as the free energy value
on the highest l% ‘surprise’ regions in the input image.

F. HVS Based Fusion Model

The proposed SISBLIM is defined as a linear combina-
tion of weighted quality scores of noise, blur and JPEG
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(a) (b)

(d)(c)

Fig. 7. Illustration of the masking effect of noise on JPEG compression artifacts in multiply distorted images in MDID2013.

compression as well as the joint effect stated above:

SISBLIM =
∑

i={N,B,J,F}
(ξiλi)Qi (12)

where λN = λF = 1, λJ = 1 − λB, and ξN , ξB, ξJ , ξF and
λB are model parameters, and QF indicates the joint effect
measured by ‘free energy’.

The LIVEMD database [44] involves two groups of multi-
ply distorted images, namely blur&JPEG images (225 images
corrupted by blur followed by JPEG) and blur&noise images
(225 images contaminated by blur followed by noise). We have
mentioned that the HVS can effectively separate noise from
a (multiply) distorted image. Noise estimation is almost inde-
pendent of other distortion measures. As a matter of fact, the
accuracy of SINE is largely immune to the influence of blur
and JPEG compression. In an example shown in Fig. 5, all
images in LIVEMD with four various levels of noise are rep-
resented by red, green, blue and black scatter plots, which
suggests that the performance of SINE for noise estimation is
rarely affected by the other two distortion types. So we first
estimate the noise level (QN) of a given distorted image to
be an important component of SISBLIM, and then apply this
estimated result to image denoising.

Although the HVS can easily separate the artifacts of blur-
ring and blockiness, it is not an easy task for computers.
In this work, we carefully compare Eq. (3) and Eq. (4),
and find that the ratio of Bh to AJ can validly partition

JPEG compressed images (including images only corrupted by
blockiness and images corrupted by blur and JPEG together)
apart from other images. More specifically, BJ is actually com-
puting the mean of |Dh| and |Dv| values located in the edge
of all the blocks, while AJ is evaluated for the 6 × 6 interior
part. It is not difficult to conjecture that BJ is nearly equal to
AJ for non-blockiness images, whereas BJ is larger than AJ

for JPEG compressed images. Fig. 6 displays the relationship
between BJ and AJ for all images in LIVEMD. Red, green,
blue and black scatter plots individually indicate four different
degrees of JPEG compression.

Also, it is important to notice that performance of MBBM
is influenced by blockiness, since its basic idea is to measure
the spread of edges in an image. We therefore only adopt
QJ with updated values of {φ1, φ2, θ1, θ2, θ3} to predict the
qualities of JPEG compressed images in light of the function
of AJ and ZJ in measuring blurriness, and utilize QB for other
type of distorted images. We therefore in this paper adjust

TABLE II
ILLUSTRATION OF DIFFERENT SISBLIM-TYPE OF METHODS WITH THE

COMPONENTS USING DISTINCT DISTORTION-SPECIFIC QUALITY

MEASURES
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the control parameter λB to selectively using QJ or QB in the
computation of SISBLIM:

λB =
{

0 if BJ/AJ ≥ �λB

1 otherwise
(13)

where �λB is a threshold to distinguish the JPEG compressed
images and other images (namely the black scatter plots and
other scatter plots in Fig. 6). The value of �λB should be a
little larger than one and in this paper we set �λB = 1.5.

For multiple distort types, we still have to take into account
the impact of noise injection on the blockiness estimation.
Fig. 7 illustrates a pair of “hats” images in MDID2013 for
comparison: (a) is the image corrupted with the lowest level
of blur and noise, and the highest level of JPEG compression;
(b) is the denoised image from (a) using BM3D with true
noise variance; (c) is the distorted image corrupted with the
lowest level of blur, and the highest level of noise and JPEG
compression; (d) is the denoised image from (c) with BM3D.
We can easily find that (a) and (c) are contaminated by the
same highest level of JPEG compression, yet the blockiness in
(c) is much harder to notice than that in (a), due to the mask-
ing effect caused by the high level of noise. Equally, after
image denoising, (b) exhibits obvious blockiness in the sky
region, whereas (d) shows little. It is very clear that this phe-
nomenon decides the λB value. We accordingly characterize
this masking effect of noise on JPEG compression artifacts by
adding a small constant (we choose 0.5) to the threshold �λB

when obvious noise exists (e.g., the estimated noise variance
is larger than 1.5).

Finally, we combine single quality prediction of each dis-
tortion type and the joint effect of mixed artifacts to derive
the quality prediction of the proposed SISBLIM. To be fair, all
model parameters in SISBLIM were acquired on the LIVEMD
database [44], since this database is publicly available.

G. Fusion Model With Other Component Measures

It is very unlikely that those distortion-specific measures we
have used in the SISBLIM model is the only choice. Other
metrics were also tested, e.g., FISHbb [37] and WTPNE [39],
as listed in Table II. SISBLIMsm is the original method. All
model parameters in other three SISBLIM-type of metrics
were also trained following the same procedure as SISBLIM.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this section, we testify the performance of SISBLIM and
compare it with eight IQA metrics. These competitors are:

• PSNR and SSIM [6], the benchmark IQA methods with
a wide application in the image processing literature.
• MS-SSIM [9], performs SSIM in each level and integrates
the above outputs with psychophysical weights.
• DIIVINE [30], extracts 88 features using the NSS model
to characterize the essence of natural images: 1) distortion
identification; 2) distortion-specific quality assessment.
• BLIINDS-II [31], relies on a simple Bayesian inference
model to predict image quality based on certain features
extracted using the NSS model in the DCT domain.

• BRISQUE [32] and BRISQUE-II [44], use scene statis-
tics of locally normalized luminance coefficients to quantify
possible losses of “naturalness” in images to derive a qual-
ity measure, with only 36 features. Following the method
mentioned in [44], BRISQUE-II is trained on the LIVEMD
database using the support vector machine (SVM) [57] with
parameters supplied by the authors.
• NIQE [34], predicts the image quality nearly without any
prior knowledge of contents or distortions. NIQE measures
the deviations from statistical regularities in natural images.
All the six image quality databases (LIVE, TID2008, CSIQ,

IVC, Toyama, LIVEMD) and our MDID2013 are used in this
study. Details of MDID2013 have been illustrated in Section II.
Basic information of other six databases is as follows:

• The LIVE database [7] contains five image data sets, and a
total of 779 distorted images from 29 pristine images. There
are five commonly encountered distortion types, and in this
work, we select 465 images belonging to JPEG, white noise
and Gaussian blur subsets.
• The TID2008 database [48] is the largest database includ-
ing 1700 distorted images generated from 25 references
with 17 distortion types at 4 distortion levels. Here, we pick
300 images corrupted by three distortion types: a) Additive
noise; b) Gaussian blur; c) JPEG compression.
• The CSIQ database [49] totally consists of 866 images,
which are created from 30 original images by using six
types of distortions at four to five distortion levels. In
our study, 450 images corrupted by additive noise, JPEG
compression and Gaussian blur are used for testing.
• The IVC database [50] is consisted by 185 images gen-
erated from 10 sources. Two distortion types and their
associated 70 images are applied: 1) JPEG; 2) Blurring.
• The Toyama database [51] includes 168 distorted images.
We choose 84 JPEG compressed images in this work.
• The LIVEMD database [44] is the first image database
for multiple distortions. It has two image subsets which are
created by adding different levels of noise/JPEG to blurred
images, respectively. There are 225 images generated from
15 pristine images in each subset.
Using those IQA databases, we first compute the objective

prediction scores of each quality metric, and use the nonlinear
regression to map the scores to subjective ratings based on the
four-parameter logistic function:

Q(ε) = ξ1 − ξ2

1 + exp (− ε−ξ3
ξ4

)
+ ξ2 (14)

where ε and Q(ε) are the input score and the mapped score,
and ξj (j = 1, 2, 3, 4) are free parameters to be determined dur-
ing the curve fitting process. We then employ five commonly
used performance measures, as suggested by VQEG [58], to
evaluate and compare the proposed method with competing
IQA metrics. The five performance evaluations are:

• Pearson linear correlation coefficient (PLCC) is computed
between human ratings and objective scores after nonlinear
regression of Eq. (14). It is defined as

PLCC =
∑

i(qi − q̄)(oi − ō)
√∑

i(qi − q̄)2(oi − ō)2
(15)
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TABLE III
PERFORMANCE EVALUATIONS OF OUR SISBLIM AND COMPETING IQA METRICS. WE BOLD THE BEST TWO PERFORMED METHODS

where oi and ō are the i-th image’s subjective rating and the
mean of all oi. qi and q̄ are the converted objective scores
after nonlinear regression and the mean of all qi.
• Spearman rank-order correlation coefficient (SROCC) is
calculated by

SROCC = 1 − 6

M(M2 − 1)

M∑

i=1

d2
i (16)

where di is the difference between the i-th image’s ranks
in subjective and objective evaluations, and M is the image
numbers in the testing database. It is a non-parametric rank-
based correlation measure, independent of any monotonic
nonlinear mapping between subjective and objective scores.

• Kendall’s rank-order correlation coefficient (KROCC) is
another important non-parametric rank correlation metric
given by

KROCC = Mc − Md
1
2 M(M − 1)

(17)

where Mc and Md indicate the numbers of concordant and
discordant pairs in the data set, respectively.
• Average absolute prediction error (AAE) is measured
using the converted objective predictions after the nonlinear
mapping of Eq. (14):

AAE = 1

M

∑
|qi − oi|. (18)
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TABLE IV
PERFORMANCE MEASURES OF SISBLIM AND STATE-OF-THE-ART FR FSIM, GSIM, IGM, AND GMSD ON LIVEMD AND MDID2013

TABLE V
PERFORMANCE EVALUATIONS OF DIFFERENT SISBLIM-TYPE OF METHODS. WE HIGHLIGHT THE BEST PERFORMED METRIC WITH BOLDFACE

• Root mean-squared (RMS) error is defined as the modified
version of AAE:

RMS =
√

1

M

∑
(qi − oi)2. (19)

Among the five evaluations above, a value close to 1 for PLCC,
SROCC, KROCC, yet close to 0 for AAE, RMS indicates
superior correlation with subjective quality scores.

Table III illustrates the performance evaluations of PLCC,
SROCC, KROCC, AAE and RMS (after nonlinear regression)
and their average results of nine IQA approaches on seven
databases. The database size-weighted average is defined as
δ̄ =

∑
i δiωi∑
i ωi

where δi (i = 1, . . . , 7) indicates the correlation
measure for each database, and ωi is the number of images
in each database, i.e. 465 for LIVE, 300 for TID2008, 450
for CSIQ, 70 for IVC, 84 for Toyama, 450 for LIVEMD, and
324 for MDID2013. Table V reports the prediction accuracy
of different SISBLIM-type of methods with distinct compo-
nents (defined in Section III-G) to validate the robustness of
the proposed framework. Furthermore, Table IV testifies our
blind SISBLIM algorithm with state-of-the-art FR FSIM [17],

GSIM [18], IGM [20] and GMSD [24] on multiply dis-
torted image databases (LIVEMD and MDID2013). From
Tables III–V, we have the following observations:

• First, it is viewed that our algorithm has achieved very
encouraging results as compared to state-of-the-art NR IQA
metrics and classical FR IQA methods on single and mul-
tiple distortion types. Specifically, SISBLIM has gained
better results (on average) than the powerful FR MS-SSIM
and the best-performed NR BRISQUE (to date) which is
trained using the entire LIVE database, and clearly out-
performs the benchmark FR PSNR and SSIM and other
recently proposed NR IQA metrics. Besides, note that
the proposed algorithm is a little inferior to BRISQUE-II
which is trained on the overall LIVEMD database and
highly depends on that database, yet remarkably superior to
BRISQUE-II on other singly and multiply distorted image
databases. In summary, the proposed SISBLIM performs
better than all testing IQA methods on average.
• Second, we can find that the proposed algorithm is
extremely effective in the IQA of multiple distortions. Our
SISBLIM, despite of blind metric, is superior to recently
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(a)

(b)

Fig. 8. Scatter plots of DMOS versus classical PSNR, SSIM, MS-SSIM, state-of-the-art FSIM, GSIM, IGM, GMSD, and our SISBLIM on
LIVEMD and MDID2013. The (red) lines are curves fitted with the logistic function and the (black) dash lines are 95% confidence intervals.
(a) LIVEMD database. (b) MDID2013 database.

TABLE VI
PERFORMANCE COMPARISON BETWEEN OUR SISBLIM AND OTHER METHODS WITH F-TEST (STATISTICAL SIGNIFICANCE). THE SYMBOL “1”, “0,”

OR “−1” MEANS THAT SISBLIM IS STATISTICALLY (WITH 95% CONFIDENCE) BETTER, UNDISTINGUISHABLE, OR WORSE THAN THE

CORRESPONDING METHODS

developed FR IQA methods (including FSIM, GSIM, IGM,
and GMSD) in assessing multiply distorted images, as listed
in Table IV.
• Third, the proposed SISBLIM is a universal model since
the components within our framework can be replaced with
other more effective dedicated blind metrics to improve the
prediction accuracy of SISBLIM. As tabulated in Table V,

SISBLIMs with the components using other distortion-
specific blind measures present higher performances than
the original on some databases.
• Fourth, our blind algorithm is not training based, but is
motivated to model the perceptual process of the HVS. This
makes SISBLIM inherently suitable for handling images
with complicated distortions. Tables III and IV just report
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the high correlation performance of our SISBMLIM on
different image quality databases.
Additionally, in this paper we also use the F-test to evaluate

the statistical significance of the proposed model by comput-
ing the prediction residuals between converted objective scores
and subjective ratings. We first suppose F denote the ratio of
two residual variances, and Fc (determined by the number of
residuals and the confidence level) be the judgement thresh-
old. We then rule that the difference of prediction accuracy
between those two metrics is significant when F > Fc. The
statistical significances between our algorithm and other IQA
metrics in comparison are listed in Table VI, where the symbol
“1”, “0” or “-1” means that the proposed metric is statistically
(with 95% confidence) better, indistinguishable, or worse than
the corresponding metric, respectively. It is easy to find that
our SISBLIM, despite of its training-free nature, is statistically
better than the benchmark FR PSNR and SSIM and most state-
of-the-art NR IQA metrics, as well as is highly on par with
the powerful FR MS-SSIM.

Finally, Fig. 8 gives scatter plots of classical and recently
proposed FR IQA methods and the proposed SISBLIM on
multiply distorted image databases. Those approaches include
PSNR, SSIM, MS-SSIM, FSIM, GSIM, IGM, and GMSD. It
is apparent that the convergence and monotonicity of our blind
model outperforms state-of-the-art FR IQA algorithms.

V. CONCLUSION

This paper is devoted to the problem of quality assess-
ment for multiply distorted images. In practice, images are
usually corrupted with various kinds of distortion types
simultaneously. As an important and more challenging com-
plement to the recently released LIVEMD database, this
paper first introduced a multiply distorted image database
(MDID2013) with 3-fold distortions. We then modeled the
process of human visual perception and designed a novel
no-reference SIx-Step BLInd Metric (SISBLIM). The pro-
posed algorithm is training-free and works well for single,
double and triple distortion types. Experimental results on
popular singly and multiply distorted image databases (LIVE,
TID2008, CSIQ, IVC and Toyama, LIVEMD and MDID2013)
demonstrate the superiority of SISBLIM over classical FR
PSNR, SSIM, MS-SSIM, and state-of-the-art NR IQA met-
rics. The performance of our algorithm is also better than
recently developed FR IQA methods for multiple distortions.
Furthermore, it is worth mentioning that SISBLIM is a gen-
eral model and other distortion measures can be integrated for
improved performance.
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